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On Shifting Defect Detection in Quantum Chips
From Cryogenic to Ambient Temperature

• Quantum computing has raised interest since 1980s

• Now quantum computing devices can be manufactured

• Devices work at cryogenic temperature (mK) in powerful refrigerators

• Testing at mK is extremely expensive

• Moving tests at higher temperatures will reduce the testing cost
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1. Introduction to Quantum Computing
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Quantum Computing Applications
• Some problems have no efficient solution on a classical computer:

– NP-Complete: Decision (“yes”/”no”) variants

– NP-Hard: Optimization variants

• Traveling salesman problem, maximum-2-satisfiability, factorization, ...

• Many practical applications: parcel delivery, routing of scan chain along FFs, RSA, ...

• A quantum computer can run algorithms that will drastically speed-up these problems
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Classical Computing
• Bit

• State either 0 or 1

• State known with certainty in fault-free system

Quantum Computing
• Qubit

• Superposition of states 0 and 1

• Probability of measuring 0 or 1
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• N bits in one out of 2N states • N qubits in superposition of 2N states
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A quantum computer can process all 2N states at the same time

Classical vs. Quantum Computing
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• Quantum computers not expected to become a commodity
– Require operation at cryogenic temperature
– Expensive, bulky equipment

• Quantum computing
– Will be based on shared computing resources (“cloud”)
– No high-volume testing necessary
– Only targets specific classes of problems

• A quantum computer is not universally better than a classical computer
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Quantum Computing as a Service
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2. Quantum Computing Hardware
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• Real qubits are not stable
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• Solving complex problems  103 stable logical qubits

• Single logical qubit  103 redundant physical qubits

• Fault-tolerant large-scale quantum computer  106 physical qubits
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Real Problems Require
Large-Scale Quantum Computers



• Quantum computing theory has been known for many years
• Recently: focus on building quantum computing devices

• At imec:
1. Superconducting
2. Silicon quantum dots

• Operation at mK in 3He/4He dilution refrigerator

Quantum Computing Platforms
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• Qubit:
Spin of a single electron in silicon

• Quantum dot:
Area where the electron is confined

• Qubit manipulation:
Microwave pulses with ESR antenna

• Qubit readout:
Single Electron Transistor

Silicon Spin Qubits
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3. Device Characterization Metrics
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• Main source of noise: Si/SiO2 interface disorder

Interface Disorder Main Limiting Factor
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• Interface disorder characterized with quantum dot metrics
• Working principle: Coulomb blockade effect at mK

Coulomb Blockade Effect
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• Based on Coulomb blockade effect at mK

• Measurement in 3He/4He dilution refrigerator

– Long cooldown times (~12h)

– Contains few devices

– Expensive equipment

Limits of Quantum Dot Metrics
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From Quantum Dot to Transistor Metrics
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• Measurement at higher temperatures

– No dilution refrigerator needed

– Reduce long cooldown times by 87%

– Measure 30× devices

• Cryogenic wafer probers at 4K



4. Room Temperature Measurement
of Quantum Devices
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• Measurement of long quantum dot arrays

– Multiple gates on multiple gate levels

– From 3 up to 8 quantum dots

Room Temperature  Measurement 
of Quantum Devices
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• Transistors with multiple gates

• Statistical analysis of Vth, SS, gmax

• IdVg curves extracted for each individual gate
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Conclusion
• Quantum computers will speed-up classically intractable problems

• Silicon spin qubits are a promising platform

• Si/SiO2 interface disorder is the main limiting factor for Si spin qubit devices

• Interface disorder mainly characterized with quantum dot metrics at mK

• Transistor metrics can be used for interface quality assessment at T higher than mK

• Testing more devices with shorter cooldown times to reduce testing cost

• Currently investigating interface disorder of test structures through transistor metrics
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