Mechanical and Electrical Performance of MicroStrip Beam Probes

Lynn Saunders MicroConnect, Inc.

MSB Description

- Fine Pitch
- High Frequency
- High Pin Count
- Long Life

Evolution of Contact Probing

Needles

- Widely used
- Limited in pitch due to minimum diameter of wires
- Limited in bandwidth due to series L
- Limited life
- Pin count is first order contributor to cost

Evolution of Contact Probing

- Photolithography based
 - Membranes (planar)
 - Mechanical Crosstalk
 - MEMS structures (3 dimensional)
 - Micromachined

Technology Background

- Mechanical crosstalk in membrane probes
- Independent suspension of needle probes
- Need for solution based on photolithography

Technology Breakthrough

- Ability to produce slits with very high aspect ratio
- Initial aspect ratio 10:1

Technology Improvements

- Recent experiments resulting in 75:1
- Recent slit width of 2 µm

Scale Sketch of 75:1 Aspect Ratio Slit

2 micron Slit in 150 micron Thick Material

50 µm pitch probe

- Photo of actual 50 µm pitch device
- 600 pin device
- Controlled impedance to tip

 Device made by R&D Center
Micronics Japan Co. Ltd

35 Micron Pitch Geometry

High Frequency

- Controlled impedance to contact point
- Impedance controlled by robust, mechanically stable elements

Simulated and Measured Electrical Performance

- Studies done at the Mayo Clinic
- TDR measurements tracked predictions
- Crosstalk predicted for 4 mil pitch probe

View of Signal Layer

Data taken by R&D Center Micronics Japan Co. Ltd

Scrub Mark Size

Circuit Resistance

Number of Touchdowns

Planarity

→ Touchdown Window

Number of Touchdowns

XY Position Distribution

Distance from Ideal in microns

Measured Electrical Performance

Data taken by R&D Center Micronics Japan Co. Ltd

Max Current 700ma

Impedance $50\Omega \pm 10\%$

Crosstalk <5%

Contact Resistance 0.2Ω (average)

Circuit Resistance 2.5Ω (average)

Probe Design Goals

Specification by R&D Center Micronics Japan Co. Ltd

Chip Size 25mm X 25mm

Pin Count 2000

Pad pitch 50µm

Frequency Capability 10GHz

Mechanical Characteristics

Data taken by R&D Center Micronics Japan Co. Ltd

Contact Force 5g per bump

@ 3mil overdrive

Planarization Limits 20µm

Bump Placement ±1µm

Scrub Mark Size 10µm X 15µm

Life 1,000,000 TD

Temperature 25°C - 150°C at

bump

Micro Connect Inc.

Slide No.24

Product Status

- Probe in beta test January 1998
- Probe evaluation due June 1998
- Further product shipments 3q98

Probe Test Status

- These results are a snapshot of where we are today
- Studies are ongoing to more completely characterize the probe

Credits

- Thomas C. Hill, III; Consultant
- Gregg Fokken; Mayo Clinic
- Yoshiei Hasegawa, President, Micronics Japan Co. Ltd.*

^{*} MicroConnect and MJC have a joint development contract.