Optimizing Design of a Probe Card using a Field Solver

Rey Rincon, r-rincon@ti.com
Texas Instruments
13020 Floyd Rd MS 3616
Dallas, TX. 75243
972-917-4303
Eric Bogatin, bogatin@ansoft.com
Bill Beale, beale@ansoft.com
Allen Grantham, grantham@ansoft.com
Ansoft Corp.
4 Station Square Ste 660
Pittsburgh, PA 15219
412-261-3200

Field solvers used: Ansoft's
 Maxwell 2D Extractor, Maxwell Q3D Extractor, Maxwell Spicelink

Copies of this presentation are available if you leave me your biz card

Design Challenges

- Increased bandwidth of digital test signals
- Increasing buss widths
- Design cycle times shrinking
- New board technologies being introduced
- New design methodology needed:
- increased productivity
- robust designs, correct the first time
- incorporating high speed effects

An Example Applied to a Conventional 256 Pin Probe Card

New methodology:

- perform design tradeoff analysis with virtual prototypes
- use parasitic extraction and simulation to evaluate impact of physical design on electrical performance

Features to evaluate

1. Optimize the design of the fan out from the pogo pin pad to the needle pad
2. Shorten needles

Board Stackup

- Typical 8 layer Stack up:
- G
- S
- G
- VCC
- VCC
- G
- S

- G

Issues to analyze:

\checkmark How wide should the ground planes extend for accurate analysis?
\checkmark What line width should be used for 50 Ohms
$\checkmark \quad$ What is cross talk as spacing between traces increases?
\checkmark What is effect on cross talk from central guard trace: electrostatic or ground conductor

Parameterized Stripline Model

Problem Setup in Ansoft's Maxwell 2D Extractor:

sweeping distance from

 edge of plane to trace

Effect on Extent of Ground Planes

Automatic
adaptive mesh

More than 10 mils on either side is not needed:
rule of thumb- in stripline, fringe fields extend on the order of $2 / 3$ the dielectric thickness

Optimized Line Width for 50 Ohms

Final design rules

(dielectric constant $=4.0$)

Cross Talk Between Two Traces

Pitch	$\underline{\mathbf{k}}_{\text {ne }}$
12 mil center	5.1\%
15 mil center	2.5\%
20 mil center	0.73\%
25 mil center	0.27\%
30 mil center	0.09\%
50 mil center	0.002\%

Cross Talk Behavior

Pitch is 12 mils
$\mathrm{k}_{\mathrm{ne}}(\mathrm{sat})=5.1 \%$

When TD < 1/2 Rise Time

$$
V_{\text {noise }}(\text { sat }) \approx k_{\text {ne }} x V_{\text {active }} x\left(\frac{2 T D}{\tau}\right)
$$

Length $=2.5$ inches, $\mathrm{TD}=0.42 \mathrm{nsec}$, rise time $=1 \mathrm{nsec}$

Cross Talk for 25 mil Pitch

@ 25 mil pitch $\mathrm{k}_{\mathrm{ne}}=0.0027$
Length $=2.5$ inches, $\mathrm{TD}=0.42 \mathrm{nsec}$

$$
V_{\text {noise }} \approx k_{n e}(\text { sat }) \times V_{\text {active }} x\left(\frac{2 T D}{\tau}\right)
$$

$$
V_{\text {noise }}=0.0027 \times 2.5 \mathrm{v} \times 0.84=0.006 \mathrm{v}
$$

Simulated cross talk @ 25 mil centers is $\sim 6 \mathrm{mV}$ cross talk @ 50 mil centers < 0.06 mV

3D Modeling of Needles

Circuit Model for Needles

Extracted Matrix Elements for Long Needles

Inductance

Capacitance
$L_{11}=39 n H$
$\mathrm{L}_{12}=27 \mathrm{nH}$

Effective Characteristic Impedance for Two Needles

Comparison for Half Pin Length

Simple Circuit Model

Compare three cases:

- no probe needles
- 0.5 inch long probe needles
- 1.0 inch long probe needles

Conditions:

- 3 drivers switching simultaneously using same ground pin
- 10 Ohm drivers into 50 Ohm lines
- all other lines tri-state open
- 100 psec rise time
- quiet line is tri-state open
- ground pin between 1 driven line and 2 driven lines

Simulation Results: Far End Signals

Summarv:needles dominate BW and noise performance limitations

- current generation needles have:
- ~800 psec intrinsic rise time (440 MHz BW)
- 0.5 v noise on quiet line
- reducing length by 50% results in:
- ~2x increase in BW: 375 psec rise time
- coupled noise on quiet line reduced to 0.375 v

Conclusions

- 2D and 3D field solvers can be used to create circuit models for the probe card components
- Circuit models and simple simulations can identify significant and insignificant factors
- Even at 25 mil pitch, cross talk is so small, no need for guard traces
- Largest source of noise, bandwidth limitation are in the needles
- Short needles are better than long needles
- Specifics of performance also affected by device driver models, \# of SSO, which can be combined with probe card models for application specific simulations

