OVERALL PROBING ACCURACY AT ELEVATED TEMPERATURE

Phil Seitzer Lucent Technologies - Allentown Rick Langford Lucent Technologies - Orlando

OUTLINE

- Introduction
- Analysis of probe mark placement error
- Case Study A 12" interface at elevated temperature
 - History of Problem
 - Work in progress solutions tried & lessons learned
 - -Further work
- General Observations

CHALLENGES TO WAFER PROBE

- Dimensions (including bond pads) keep growing smaller.
- The assembly folks (especially wire bonder suppliers) have forged ahead in capability.
 - —Wafer probe is now the primary barrier that designers must conquer when they want smaller bond pads.
- More and more devices require elevated temperature wafer probe.

Analysis of Probe Mark Placement Error (Dimensional Allocation)

- Dimensional Allocation is a method developed at Lucent Technologies to compare the performance of various prober and interface combinations.
- Utilizes actual measurements wherever possible.
- Attempts to include the error effects of temperature changes.

 $15\,\mu m$

Bond Pad Dimensional Analysis

- A. Maximum Scrub Length 59.6 µm
- B. Leading Damage Margin $5\,\mu m$
- C. Heel Margin 5 µm
- D. Maximum Scrub Width 27 µm
- E. Width Margin

F.	Ma	axir	num	P	rober Alignment Error	4	5 µm
\sim	_	-	_				_

- G. Probe Positional Error 6.5 µm 3.0 µm
- H. Interface Stability Error

Bond Pad Dimensional Analysis

- Prober Alignment Error manufacturer's spec 5 µm
- Probe Positional Error condition of probe card

- Carefully maintained cards 6-7 µm (3∠)

—Normal production cards 12-14 μm

• Interface Stability Error

- Difficult to measure - uses upward-looking prober camera

- Includes changes in position due to temperature

	Error (µm)
Tester A	6.8
Tester B	15.6
Tester B-2	1.3
Tester C	7.7
Tester D	5.5

Bond Pad Dimensional Analysis

- Combined placement error (1∠)
 = ((F/3)² + (G/3)² + (H/3)²)^{1/2}
- For Tester B:
 - = $((5/3)^2 + (6.5/3)^2 + (15.6/3)^2)^{\frac{1}{2}} \mu m$
 - = 5.85 µm
- Resulting 3∠ placement error:
 - = 17.55 μm

CASE STUDY - A 12" Probe Card - WAFER PROBER INTERFACE

- Issues apply to many large test heads.
- Issues are not new most if not all have been discussed here before.
- Much support has been provided by test system, probe card, and prober vendors.

PROBLEM: Testing at 100° C

First site

Last site

Lucent Technologies Bell Labs Innovations

Performance of Standard 12" Probe Card Interface

	Chuck	Х	Y	Ζ	ΔΧ	ΔΥ	ΔZ
	Temp.						
Initial reading	25.0°C	560.1µM	87.5µM	20348µM			
After Re-Docking	25.0°C	571.5µM	86.7µM	20289µM	11.4µM	0.8µM	59µM
10 minute soak	100°C	560.2µM	72.3µM	20248µM	0.1µM	15.2µM	100µM

Some Factors Possibly Affecting Accuracy

- High and/or Uneven Pogo-pin Pressure
- Inadequate Probe Card Support
- Inadequate Probe Card Stiffness
- Uneven probe card heating due to chuck position
- Temperature gradient between top & bottom of card
- Not enough clearance between card edge and holder
- Possible interference with alignment pins as card expands
- Inadequate soak time
- Possible epoxy softening

INTERFACE DIAGRAM

Corrective Strategies

- Thermal
 - Minimize the temperature seen by the probe card.
 - Minimize the temperature gradient.
 - -Allow sufficient soak time.
- Mechanical
 - -Revise the mechanical design of the probe card.
 - Improve the probe card holder.

Vertical Temperature Gradient

Lucent Technologies Bell Labs Innovations

Radial Temperature Gradient

PROBE CARD HEATING

- Soak Time
 - Long soak time required for stabilization and top to bottom gradient will still exist.
 - Uneven heating from moving chuck still causes probe card x-y movement.
 - —Will not solve problem.
- Heat Shield
 - Tends to increase Temperature gradient in x-y Plane.
- Probe Depth

Mechanical Effects

• Probe Card Stiffness

-New Materials

Interface Stiffness

- Probe card tray as bottom side stiffener

- -Top side stiffener
- Interface Stability

- Probe card secured to tray

microelectronics group

South West Test Workshop 1998

microelectronics group

Lucent Technologies Bell Labs Innovations

EVALUATION

- Work is currently in progress.
- The impact of any single change, made separately, has not been dramatic.
- All improvements made together are expected to produce a solution capable of being used in production.

General Observations

- The prober probe card tester interface for many large systems is complex mechanically, electrically and thermally.
- Industry trends are placing more and more demands on this design, requiring attention to mechanical and thermal characteristics.
- Interface stability, although difficult to measure, is an important parameter when high accuracy probing is required.

Lucent Technologies

Bell Labs Innovations

ACKNOWLEDGEMENTS

- Cerprobe
- Credence
- JEM America
- Lucent Engineering
 - -Allentown PA
 - -Orlando FL
- TEL
- TSK

