Electrohydrodynamic (EHD) Cleaning for C_{RES} Reduction in a High Volume Production Environment -An Engineering Evaluation

Jerry Broz

Texas Instruments, Inc. 13560 N. Central Expressway Dallas, TX 75243

Jim Andersen

Applied Precision, Inc. 1040 12th Avenue, NW Issaquah, WA 98027

Rey Rincon

Texas Instruments, Inc. 13560 N. Central Expressway Dallas, TX 75243

1 14-June-00

SWTW 2000

Overview

- Cantilevered Probe Cleaning Problems to Address
- Commonly Used Cleaning Techniques
- Fine Pitch Cleaning Issues
- EHD Cleaning for Contact Resistance Reduction
- Mechanisms Behind EHD
- Benefits for High Volume Production
- Engineering Evaluation
- Summary

W 2000

14-June-00

2

Cantilevered Probe Problems to Address

• Probing is a "dirty business"

- Residues from wafer processing
- Adherent particulates
- Bond pad and probe needle surface oxides
- Temperature effects, i.e. hot chuck testing, high current
- High C_{RES} leads to yield fallout and reprobe

• Maintenance of clean probe contact surface

- "Clean" probes provide low and stable C_{RES}
- Quality of the intermetallic contact at conductive a-Spots
- Short setup time and consistent prober/tester uptime

Commonly Used Cleaning Techniques

• Burnishing on an abrasive surface

- 0.5, 1.0, 3.0, and 5.0- μ m grit lapping film
- 10-μinch finish tungsten-carbide cleaning plate
- Ceramic cleaning chuck
- ♦ Efficient for reducing C_{RES} at the cost of probe damage

• "Non-destructive" techniques

- Manual brushing with or without IPA
- Ultrasonic cleaning and DI-water rinse
- Detergent and water immersion
- CO₂ Snow

4 14-June-00

Variable effects on C_{RES} at the cost of P&A integrity

Fine Pitch Abrasive Cleaning Issues

- Current abrasive cleaning processes reduce C_{RES}
 - ♦ Reduced pad sizes ⇒ sensitivity to non-planarity and misalignment
 - ♦ Smaller probe diameters ⇒ damage from frictional shear stresses
 - ◆ Smaller probe tips ⇒ coarse deformation of probe contact surface
 - Increased power requirements \Rightarrow oxidation and burnt probes
 - Excessive abrasive cleaning \Rightarrow reduced probe card life (\$\$\$)
- Also, current cleaning processes are not "new" probe card technology friendly
- Clearly, there is a need to investigate an option for maintaining low C_{RES} without reducing the service life of these fine pitch probe cards

5

EHD Cleaning for C_{RES} Reduction

• How does it work?

- Non-destructive
- Fab-safe cleaning media
- Requires a vacuum
- Relatively fast compared to other methods

- In a Production Environment
 - Small footprint
 - Programmable recipes
 - Minimal operator training
 - ◆ Off-line cleaning only
 - Probe card PM schedule

6

Mechanisms Behind EHD

7 14-June-00

SWTW 2000

14-June-00

8

Benefits for High Volume Production

- Effectively maintain low and stable probe C_{RES}
 - Reduce "false fails" to increase yield
 - Minimize the need for reprobe
 - Decrease operator intervention
 - Extend probe card service life
- Overall benefits to productivity and utilization
 - Increased equipment up-time
 - Improved cycle-time and throughput
 - Improved cost of ownership (COO)

What we have been told.....

..... And what we really don't know.....

- What have we been told about EHD cleaning?
 - Reduces contact resistance
 - Removes aluminum and Al₂O₃ probe tips
 - Leaves no residuals on probes or bond pads
 - Non-destructive to probe contact surface
- What do we need to learn?
 - Damage to probe card materials
 - Epoxy ring
 - Ceramic guide plate
 - Printed circuit board
 - Long-term benefits on probe cards (if any)
 - Positive (or negative) effects on yield

Engineering Evaluation - Part 1

"Technology Validation"

SWTW 2000 10 14-June-00

AppliedPrecision

C_{RES} Reduction (EHD vs. Abrasive)?

- Representative Production Probe Cards
 - All cards had been regularly used to probe Al-bond pads
- For typical cards, EHD cleaning reduced the C_{RES} to a level comparable to that attained with off-line abrasive cleaning

Post EHD Cleaning CRES of Probe Card for Device F6XXXXX

TEXAS INSTRUMENTS

SWTW 2000 11 14-June-00

Residuals on Bond Pads?

• No residue from the EHD cleaned probes was observed on the bond pad or in the scrub marks

SWTW 2000 12 14-June-00

SWTW 2000

13 14-June-00

Non-destructive to probe contact surface?

- Probe surface topography was unchanged by EHD cleaning
- No discernable changes in probe planarity and alignment

Damage to Card Materials - Epoxy?

- Adherent particulates were removed from the surface
- Sharp corners of a scribed reference line were unaffected
- The contours of the surface were unchanged

SWTW 2000 14 14-June-00

AppliedPrecision

SWTW 2000

15 14-June-00

Damage to Card Materials - Ceramic?

• Ceramic lower die (guide plate)

- Adherent contaminants associated with probing were removed from the surface
- Overall surface texture was not discernibly changed

Engineering Evaluation - Part 2

"We still have lot to learn..."

SWTW 2000 16 14-June-00

17 14-June-00

On the Probe Floor - Long Term Evaluation

- High volume devices sensitive to C_{RES} stability and variation
 - Fine pitch, dual-site cantilevered probe cards
 - Probe cards with production track records (historical)

• Probe card metrology and cleaning procedures

- Baseline C_{RES} , leakage, BCF, and P&A
- Off-line cleaning procedures
 - 10-µinch, WC-abrasive plate
 - EHD cleaning
- Re-evaluation of C_{RES}, leakage, BCF, and P&A
- Monitoring of wafer yield and reprobe rates
 - Within lot pre- and post cleaning yield assessments
 - Deviations from historical values assessed
 - Lots split across several probers (planned)
 - Parent lot (standard card); child lot (EHD cleaned card)

AppliedPrecision

Preliminary Production Floor Results

- **Observed yield fallout (i.e., poor probe card performance)**
- Yield recovery exhibited after off-line EHD cleaning

EHD Evaluation Summary

- Off-line Fine Pitch Probe Card Cleaning
 - ♦ Effective for reducing C_{RES}
 - Viable alternative to abrasive cleaning
 - Non-destructive to probes, epoxy, and ceramic
 - No detectable residues observed within (or outside) of scrub marks

• Long term evaluations in a production environment

- Yield fallout and reprobe
- Equipment utilization
- Probe card life
- Ongoing and long-term benefits

• Difficulties

19 14-June-00

"Onions, onions, and more onions"......