

Novel direct probe solution for opto-electronic wafer-level PIC testing

<u>Golam Bappi</u> Forrest Sedgwick

AyarLabs

<u>Tobias Gnausch</u> Christian Karras

Hubert Werkmann

ADVANTEST®

SWTest | June 3 - 5, 2024

Overview

- Introduction Ayar Labs
- Application (DUT for Photonic Test)
- Current Wafer Sort Flow
- Intended HVM Test Cell
- Technology Demonstrator
- Measurement Results
- Summary
- Outlook

Introduction to Ayar Labs

We Design and Sell Optical I/O

TeraPHY[™] optical I/O chiplet SuperNova[™] light source

Our solution is delivered as a CMOS based electronic/photonic chiplet using an external CW-WDM light source.

TeraPHY Product

TeraPHY is an **optical I/O chiplet**, which our customers will copackage with their die (CPU, GPU, FPGA, etc)

We need to provide our customers with known-good-die (KGD),

→ which means extensive waferlevel screening.

Application (DUT for Photonic Test)

- Wide parallel interface (Advanced Interface Bus)
 - 4 Tbps bidirectional bandwidth
 - 8 transceivers (Laser, Tx, Rx)
 - 8 wavelengths per transceiver
 - 32 GBaud per wavelength

• Final test must be performed at wafer level to deliver known-good die (KGD)

Wafer Sort

- Dual test insertion
- Electrical Wafer Sort (V93K ATE)
 - ~1400 bumps for electrical connectivity
 - Standby current, scan test, DFT, and at-speed functional test
- Optical Wafer Sort (CM300-SiPh probe station)
 - Optically couple into chip through edge couplers at wafer level
 - Passive optical characterization

Wafer Sort

- To meet cost targets, silicon photonics must use standardized equipment that can be shared across multiple customers
 - Today, silicon photonics probe platforms and testers are customized to specific products
 - \rightarrow Test equipment must be consigned, or production run in house
 - Future: Convert Cap Ex into Op Ex by running test subcontractors
- Drive to single test insertion on standardized platform for high volume manufacturing
 - Test cell needs to provide both optical and electrical connectivity to DUT electro-optic final test

HVM Test Cell

Target HVM test cell

- As easy to set up as pure electrical wafer sort test cells
- Fully connected optical and electrical resources with docking test head to prober/probe card

Key building blocks

- Direct dock enabled UFO probe card
- Reliable and durable optical blind mate connection at DUT interface
- Test head side panel access to required optical and electrical rack resources

Challenges towards HVM Test Cell

- Direct docking E/O probe card, especially for the optical docking
- Test cell integration into ATE Test Cell Control environment
 - Control of external instruments
 - Mechanical integration of additional E/O signal paths
 - Additional functionality for initial E/O alignments and setups
- Integration into an OSAT environment

Test Device

- Dedicated test die on the reticle
- Passive sites
 - 5 rows x 8 grating coupler loopbacks per row
 - Design of experiments to improve coupling loss to optical probe card
 - Measure wavelength dependent insertion loss
- Electro-optic sites
 - Grating coupler inputs to photodetector
 - Measure wavelength and power dependent photocurrent

• Probe Card: UFO Probe[™] TechDemo

- Probe card format: V93000 direct docking
- 32 cantilever needles (PD pads)
- 16 channel optical probe head
- Optical SM fiber connection with MPO connector
- Capacitive distance sensor (CAP sensor)
- Feedback loop to polarization controller

• Probe Card: UFO Probe[™] Working Principle

- Simultaneous optical and electrical probing in a single touch down
- Monolithic integrated optical module
- Alignment insensitive optical coupling for vertical emitting PICs
- Compensation of coarse prober position tolerances

Opto-electr. Probe Card Electrical probes (contact) Output light intensity Silicon-Photonics Wafer

Optical concept compensates

prober alignment tolerances.

Prober position

tolerance

Expected input light intensity profile of Grating Coupler

Shaped intensity output

- Prober: Standard TEL Precio XL
 - Prober control by ATE prober/handler driver via **GPIB**
- Tester: Advantest V93000 SmartScale
 - AVI 64 for photodiode current measurements
- Optical Test Equipment (rack & stack):
 - Santec TSL-570 tunable laser
 - Luna POS-203 Polarization controller
 - **DiCon Fiberoptics MEMS 1x16 switch module**
- Probe Card: UFO Probe[™] TechDemo
 - V93K direct docking format
 - Cantilever needles and optical module
 - Microepsilon capacitive distance sensor

Prober: Standard TEL Precio XL

 Replaced sealing with 3D printed cable duct for optical and electrical cable access on docking plane (picture lower r.h.s)

• Tester: Advantest V93000 SmartScale

 Top covers removed to reduce stress on optical and electrical cables when docking to prober

• Probe Card: UFO Probe[™] TechDemo

- Connector panel as separation plane for electrical and optical cables installed on probe card stiffener
- After loading probe card, required connections were set up manually between rack and connector panel

Measurement results

Qualification of loop-back in Lab setup

- Prior to prober measurements, the loopback channel were qualified in a lab setup with same optical module
- No prober but a xy-scanning setup was used
- Entire loss of loop-back 15-17dB (including overfilling losses)

Measurement results

-

SWTest | June 3 – 5, 2024

Measurement results

Measurements at iTest

- Wafer and site (sub-die) stepping without extra optical alignment per die
- Demonstrator setup allows characterization of chips
- Wavelength scan, maximum at site 1 (@ ~1316nm)

Wafer map channel 4

SWTest | June 3 – 5, 2024

Conclusion

We demonstrated

- That a Standard IC Test Cell can test photonics
- Direct prober loading of an E/O-probe card
- Tester direct docking with an E/O-probe card
- Tester/prober/external instrument handling
- Initial lateral E/O-probe card alignment
- Wafer and site (sub-Die) stepping
- Wavelength scan

Outlook

Way to full HVM Test cell

- UFO Probe integration with Vertical Needles already demonstrated (UFO Probe[™] Vertical)
- Next logical step: "full chip" direct docking probe card for V93000
- Direct and automated optical docking of E/O Probe Card to tester → 'blind mate' connection
- Optical channel routing through tester
- Automated probe card initialization routines by tester

Acknowledgements

- UFO Probe Team in Jena (Jenoptik)
- Clemens Leichtle (Advantest)
- Dries Vercruysse (Ayar Labs)
- Rabbi Islam, Timothy Truong, Philip Lu (iTest)