

Anisotropy in High-Strength Palladium Alloys for Foil Probe Applications

Megan K. Puglia, Ph.D. Grant G. Justice Patrick K. Bowen, Ph.D. Deringer-Ney Inc.

SWTest | June 3 - 5, 2024

Introduction

- Pd-Ag-Cu-based alloys used since 1970s¹ for buckling beam probes
- Over five decades, innovations led to new foil probes cut from metal sheets using lasers
- Allows different material choices versus electrodeposited MEMS
- Departure from wire introduces new material propertyperformance questions

Background

- During wrought processing, like rolling, grains tend to orient to a particular crystallographic direction, creating an inhomogeneous texture
- Material behavior often differs when loaded at angles to dominant texture²
- Anisotropy is directional variation in material properties

Study Objectives

 Aim: provide improved design guidance to foil test probe fabricators and users

• Hypothesis: Palladium alloys Paliney® 25 and 23 foil material properties will be strongly dependent on direction

 Study designed to confirm or refute this hypothesis for both mechanical and electrical properties

Materials

Materials Science tetrahedron for studied materials

 Paliney 23 typ. 210 ksi UTS 4% elongation 24% IACS HV 460

• Three-phase structure FCC disordered solid solution CsCI-type long range order HCP Re-based

- Multiple cold roll & anneal steps to 50µm
- Solution anneal
- Age hardening heat treatment ("HTA" temper)

Methods

Property responses tested:

- Knoop and Vickers microhardness per ASTM E384
- Electrical conductivity using Kelvin clips and a four-wire resistance measurement on a precision multimeter
- Tensile testing using quasi-ASTM E8 miniature "dog-bone" tensile samples fabricated by wire electro-discharge machining (EDM)
- Hypothesis testing using a two-tailed, unpaired T-test at 99% confidence

Methods

Results - Microstructure

Paliney 25 rolling direction (RD)

Paliney transverse direction (TD)

SWTest | June 3 - 5, 2024

Results – Typical stress-strain behavior

Puglia, Justice, Bowen

SWTest | June 3 - 5, 2024

9

Results - Conductivity Anisotropy

T-test results (p-values) Paliney 25

	RD	TD
RD	1	0.0467
TD		1

Paliney 23

	RD	TD
RD	1	0.1335
TD		1

Results - Modulus Anisotropy

T-test results (p-values)

Paliney 25

	RD	TD	45°
RD	1	0.8068	0.7696
TD		1	0.5689
45°			1
Paliney 23			
	RD	TD	45°
RD	1	0.1432	0.4791
TD		1	0.2039
15°			1

Puglia, Justice, Bowen

Results - Elongation Anisotropy

T-test results (p-values)

Paliney 25

	RD	TD	45°
RD	1	0.2623	0.1489
TD		1	0.6129
45°			1
Pali	ney	23	
	RD	TD	45°
RD	1	0.1103	0.2041
TD		1	0.5524
150			

Puglia, Justice, Bowen

Results - Strength Anisotropy

T-test results (p-values)

Paliney 25 UTS

	RD	TD	45°
RD	1	0.1634	0.0224
TD		1	0.1407
45°			1
Paliney 23 UTS			
	RD	TD	45°
RD	1	0.1805	0.2917
TD		1	0.9686
45°			1

Note: no significant results (p<0.01) for 0.2% offset yield strength

Results - Hardness Anisotropy

T-test results (p-values)

Paliney 25 HK₅₀

	RD	TD	ND
RD	1	0.2301	0.0098
TD		1	0.0247
ND			1
Paliney 23 HK ₅₀			

	RD	TD	ND
RD	1	0.0111	0.0007
TD		1	0.1313
ND			1

Note: T-tests also significant for HV_{50} Paliney 25 RD-ND p<0.0001, and HV_{50} Paliney 25 TD-ND p<0.0001

Discussion

- RD-ND and TD-ND microhardness anisotropy observed in both palladium alloys
- Microhardness generally correlates with abrasive wear resistance
- Key considerations:
 - Mismatch between ceramic abrasive cleaning agent hardness (ca. > HV 1,000) vs. ± HV 20-30 foil anisotropy
 - 2. Wear contribution of sub-micron third, HCP, Re-based phase
- Microhardness directionality unlikely to affect wear performance

Schematic example of composite wear, ref. 6

Conclusions

- Hypothesis of strong anisotropy in palladium alloy foils is rejected: studied materials were functionally isotropic
- Probes can be fabricated in arbitrary orientations without performance debit

Future Study

Study of wear and elastic constants or third-phase hardness by instrumented nanoindentation, if required
Directional property characterization of new alloys (sibling alloys to Paliney 25 & 23, and next-generation materials)

Bibliography

- 1. US patent 3,806,801
- 2. Nye, J. F. *Physical Properties of Crystals: Their Representation by Tensors and Matrices.* Clarendon Press, 1985.
- 3. Ide et al. Materials Transactions 56, no. 11 (2015): 1800–1806.
- 4. US Patent 10,385,424
- 5. Donahue. *Journal of Chemical Education* 96, no. 12 (2019): 2682– 88
- 6. Li et al. Materials 12, no. 22 (2019): 3646.

