

Introducing TIPS' new RzBeam and a universal metric for scrub

Technical Innovation Physical Solution

Georg Franz Diana Damian T.I.P.S. Messtechnik GmbH

Overview

- Metric for Probe Scrub
 - Motivation and Concept
 - New metric of scrub potential
 - Cantilever technology characteristics
 - Buckling beam technology characteristics
- New RzBeam Technology
 - Overview of main advantages and applications
 - Characterization of CCC
 - Measurement results of CRES
 - Contact force and Scrub potential

Motivation

- Help test engineer decide on technology selection
- Characterize capability to produce a scrub mark
- Correlate that capability with measured scrub
- Predict scrub length for other probe technologies

Concept

Capability of probe technology

- quantitative measure for capability to scrub
- characteristic value for each probe technology
- independent from pad material and tip shape

Correlation with actual scrub

- measure actual scrub length for a specific pad and probe
- correlate with simplified "friction" (material properties, roughness, tip shape, ...)
- predict scrub length for other probe technologies

Concept

Quantitative measure based on energy

- overtravel tensions the probe like a spring
- elastic energy of tension
- energy calculated by FEM
- part of that energy is used for scrub
- ratio of scrub-usable vs total energy

Stress distribution in probe

Modeling Scrub

G.Franz, D.Damian

Model Verification

Verify model against probe card analyzer

- optical scrub measurement
- sapphire window
- known constant friction
- vision overtravel
- measured scrub length

friction μ=0.15 measured=10.5 μm calculated=11.5 μm

Correlates well with FEM results

Probe Technologies

No Scrub probe

	NO SCRUB TYPES			SHORT SCRUB TYPES						STANDARD SCRUB TYPES				
Technology Name	High Voltage / Pressure Sensors (LuPo)	High Voltage / Pressure Sensors (LuPo) Berylium copper	Short Scrub Power	ShortScrub-Fine	ShortScrub- Superfine	ShortScrub-Low Force	Palladium	ShortScrub- Superfine Palladium	Standard / Complex Power	Standard Power- Fine	Standard Power- Superfine	Low Force - Superfine	Palladium	Standard Power- Superfine Palladium
Pitch- continuous [µm]	from 150	from 150	from 100	80	60	55	from 80	60	from 100	80	60	55	80	60
Tip Diam [mil]	1,6/3/5/8	4 / 10	1,6/3/5	1,2	1	1	1,2	1	1,6 / 3 / 5	1,2	1	1	1,2	1
Available Shaft Diam [mil]	10-14	15	10-14	8	6	5	10	6	10, 12, 14	8	6	5	10	6

Select probes for analysis model

- 3 main groups of cantilever technologies by scrub types:
- Standard Scrub
- Short Scrub
- No Scrub
- Select types widely used
- Select one representative size per type

Scrub Simulation Cantilever

Scrub Lengths

Simulation results

- 3 friction levels
- scrub decreases with friction
- scrub increases with overtravel
- NoScrub technology: special case
 - observed scrub very small
 - long tip bends considerably
 - small "scrub" by tilting motion

Scrub Potential

Definition

Ratio of energy available for scrub to total elastic energy

Scrub Potential "SP" SP = E_scrub / E_total

Scrub Potential

Scrub Potential

- varies with overtravel
- asymptotic
- typical value per probe technology

SP≈50%

Standard Scrub Probe

120 100

Scrub Simulation Vertical

Stress distribution in buckling beam probe

Scrub Simulation Vertical

Coloring: Displacement in scrub direction

Scrub Motion

- short scrub motion
- scrubs at once
- right at beginning of beam buckling

Scrub Potential Vertical

Scrub Potential

- scrub motion is mainly driven by kinematic constraints
- neglectable difference in elastic energy for different "friction" levels
- model not applicable

Scrub Characteristics

- defined by "play" between probe and guide plates
- maximum scrub length : limited by kinematics to 16 µm
- maximum scrub force : calculated for infinite friction, F_{scrub} < 0.35 * F_{normal}

Contact force

Technology Comparison

- Cantilever: linear rise of contact force
- TIPS Vertical / buckling beam:
 - almost full force @ 15 μm overtravel
 - scrub motion only in first 15 μm
 - more overtravel ≠ more scrub !

Summary and Outlook

- Concept works well for cantilever probes
- Not yet useful for vertical probes

Further work

- More detailed analysis of "small scrub" cases
- Validate results with more measurements
- Evaluate modified concepts

RzBeam – Vertical Probe Technology Wire style buckling beam

- Motivation
- Measurement results of CRES
- Characterization of CCC
- Characteristics Overview
- Outlook on further developments

Motivation

- Green CRES before current pulse
- Pink CRES after current pulse
- Unstable Contact Resistance when probing on copper pads
- 2,5mil Palladium probes show degrading CRES over time
 - "Sawtooth" curve with online cleaning cycles
 - Intensive online cleaning \rightarrow quicker wear out of probes
 - Pronounced contact fritting as sign of increasing film resistance

Measurement results of CRES

- 2,0mil RzBeam on Copper pads
 stable CRES
 - no contact fritting

Measurement results of CRES

- 2,0mil RzBeam on Aluminium pads
 - less stable CRES than on Copper, but low level of CRES
 - little contact fritting

Main advantages

Contact resistance – customer qualification

CRES measurements by Mr. Michael Horn, Infineon Technologies, Munich

G.Franz, D.Damian

Main advantages

Stable CRES

Probed wafers going back to sensitive CMOS process Avoiding 'risk element' contamination

Main advantages – Current Carrying Capabilities

CCC measurements by Dr. Oliver Nagler, Infineon Technologies, Munich

G.Franz, D.Damian

Characterization of CCC for RzBeam

Possibility for smaller probe pitch at same current level

Characteristics - Overview

Probe Technology	Probe diameter (mil)	Probe force (cN)	Resistance (mOhm)	Max. DC current (A)	Max. pulsed current (A) (10 ms on / 200 ms off)
Palloy	2,5	9,5	369	0,8	1,5
RzBeam (Power)	2,5	17,6	138	1,3	2,6
Palloy	2,0	3,8	585	0,4	0,8
RzBeam(Fine)	2,0	♦ 9,1	192	0,8	1,6

Contact force and Scrub potential
RzBeam Fine / RzBeam Power

Outlook on further developments

- RzBeam low force
- RzBeam superfine
- High current at 60µm pitch
 - Precise and stable contacts
- Power KGD applications
 - RzBeam non-wetting material
 - Higher test currents per probe \rightarrow higher current density

Questions

Thank you for your attention!

For further questions, please contact:

Georg FRANZ T.I.P.S. Messtechnik GmbH g.franz@tips.co.at +43 4242 319 720 19 Diana DAMIAN T.I.P.S. Messtechnik GmbH diana.damian@tips.co.at +43 4242 319 720 19

G.Franz, D.Damian